
JOURNAL OF COMPUTATIONAL PHYSICS 64, 271-275 (1986)

Note

A Method for Vectorized Random Number Generators*

In this brief note we describe a technique that we have used to generate
pseudorandom numbers on a CYBER-205 at an average rate of one per minor
cycle. Our aim is to generate the identical sequence of random numbers which is
produced by the CYBER-205 intrinsic subroutine VRANF, but at a faster rate. The
general principles can be implemented on any SIMD machine, including array
processors and CRAY’s. We do not here consider the issue of statistical properties
of random number generators (rng’s) but rather will discuss several features having
to do with vectorization of the linear congruential algorithm,

Xn=(aXn-,) mod M, (1)

The modulus, M, is often chosen in order to take advantage of machine architec-
ture. So, for example, the CYBER-205 Fortran rng uses M= 247, corresponding to
a 47-bit mantissa.

The iterative nature of Eq (1) appears at first to prohibit vectorization (i.e., a
parallel algorithm). Upon further scrutiny it turns out that vectorization is possible
provided that one first creates a vector of seeds, “X,,” or a vector of multipliers,
“a.” The first technique-that of using a seed-buffer-is presently in use in the
CRAY Fortran libraries, and has been used on the CYBER-205 [l, 23. We will dis-
cuss here the alternate method of multiplier-vectors.

The scalar algorithm consists of the following steps:

(Sl) Pick a fixed-point default seed, MSEED, and a fixed-point multiplier,
MULT.

(S2) Transform MSEED to a floating-point seed, RSEED, by packing “-47”
into the exponent.

(S3) Multiply RSEED by the multiplier and take the lower half of the
product. On the CYBER-205, this operation picks out a mantissa consisting of the
lower 47 bits of the mantissa-product, and an exponent of -47, the product of the
two exponents. The result is the new floating-point seed, RSEED.

(S4) Normalize the result by adding 0.0. This value is the output of the ran-
dom number generator.

* Work supported in part by the NSF.

271
0021-9991186 $3.00

Copyright 0 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

212 CELMASTER AND MORIARTY

Our vector algorithm is similar:

(Vl) The starting seed is created as in steps Sl and S2 above.
(V2) Then generate a multiplier-buffer of length L, where the nth element is

defined by

a(n)= [a(n- l).a] mod M (2)

and “a” is the multiplier, MULT. On the CYBER-205 the modulus is implemented,
as described above, by taking the lower half of the product. The value of L should
be chosen large enough so that the vector start-up time is negligible. In our
program we use L= 65535, which is the maximum allowable vector length. The
multiplier-buffer never needs to be updated.

(V3) Next, construct a random number vector, of length N, by linking the
lower-product and normalization steps. Namely, one first creates a vector of seeds
by multiplying RSEED with the elements of the multiplier-buffer, extracting the
lower half. This instruction is “linked” to the following step, which is the nor-
malization step S4 above.

(V4) The procedure is terminated by fetching the new seed to be used for the
next set of random numbers. This is a single scalar operation consisting of lower-
multiplication of RSEED by u(N).

The resulting algorithm produces precisely the same sequence of pseudorandom
numbers as the system-supplied subroutine VRANF, which is an optimized scalar
routine. (However, it should be noted that in any two subsequent calls to VRANF,
one random number is skipped. That is, if each call produces a vector of length N,
the second vector begins at the (N+ 2)nd number in the sequence.) Some impor-
tant features should be mentioned. First of all, the length N of the desired random
number vector can be smaller than the size of the multiplier-buffer. If N is less than
L, then only the first N multipliers are used. Furthermore, it is not necessary to use
the same value of N each time the random numbers are needed. This feature makes
it easy, in principle, to interweave scalar and vector random number generation.
Second, only two arithmetic operations are required in vector mode (step V3). On
the CYBER-205, each of these operations consists of a single machine instruction,
and both instructions can be linked so that they execute in parallel. This results in a
long-vector speed of one random number per cycle. Both of these features dis-
tinguish our algorithm from the seed-buffer algorithm that has been used
previously. We believe that we can gain a factor of two in speed over that
algorithm. There also may be several advantages to having a fixed buffer of mul-
tipliers with flexible-length random number vectors.

It is worth observing here that the CYBER linear congruential algorithm has
been criticized by Kalle and Wansleben [3]. They note that in several large Monte

VECTORIZED RANDOM NUMBER GENERATORS 273

Carlo applications, results appear to be dependent on the generator. They recom-
mend instead a certain shift-register generator. The advantage of that method may
be less obvious for simulations on systems whose sizes are not large powers of 2, or
whose interactions are more complex than the Ising Model interactions (which do
not require many floating-point operations) considered in Ref. [3], or for other
update methods, such as the heat-bath update used in SU(2) gauge theories.
Indeed, the linear congruential method may be more efficient than the shift-register
method for problems which require short vectors of pseudorandom numbers, or
which interleave scalar and vector generation. One way in which we might be able
to improve upon the statistical properties of the CYBER linear congruential
algorithm, at no cost in time, is by using an additive term in the generator, namely,

X,=(aX,_,)modMfbmodM. (3)

That can be easily implemented by changing step S4 above (and its vector counter-
part) so that b (mod M) is added instead of 0.0 (for the vector version we would
have to initialize an adder vector). We have not further explored this technique.
Nor have we considered the statistical properties of the half-precision analogue of
Eq.(l). The CYBER-205 supports half-precision operations which would allow the
linear congruential method to be used with a modulus of 223. This algorithm could
go at approximately double the speed of the one we have studied. Work would be
required to determine good choices of multiplier, starting seed, and possibly
additive term. In the meantime, for applications which require half-precision
pseudorandom numbers, we proceed as follows: first generate full precision num-
bers using RAND (V) (the algorithm described in steps Vl-V4) and then using the
special Fortran call Q8CONV convert the resulting vector to half-precision. (Alter-
natively, in Fortran, one can simply assign a half-precision vector to the result of
RAND (V). This implicity performs the conversion Q8CONV.)

We conclude by presenting a tested CYBER-205 random number subroutine.
Much of it consists of special Fortran calls (“Qg...“) which directly translate into
machine instructions. This routine has been designed with the idea that each
program will make many calls to RAND, each of which will produce very long vec-
tors. Therefore little attention has been paid to reducing the routine-calling
overhead, or to optimizing the speed of the initialization segment of the routine. So,
for instance, one call to RAND, with an argument vector of length 3000, takes
43 psec on a 2-pipe CYBER-205. The overhead is approximately 10 psec. Thus the
speed is about 10 psec per number with an overhead of about 1000 numbers. For
comparison, the CYBER-205 intrinsic routine VRANF takes about 350 nsec per
number. Of course, the first call to RAND also results in the initialization of the
multiplier buffer. This could be made more efficient by first initializing a small buf-
fer, and then using that in a recursive vector operation to generate the rest of the
buffer. Also, initialization time can be decreased if the buffer length is reduced from
its maximum of 65535. In fact, that would be desirable if the buffer vector is subject
to paging (which costs more than 1 psec per multiplier).

274 CELMASTER AND MORIARTY

SUBROUTINE RAND(V)
C
C THIS ROUTINE GENERATES A RANDOK VECTOR, STARTING WITH THE KOST RECENT
C SEED. THE LENGTH OF THE VECTOR IS THE LENGTH OF THE DESCRIPTOR, V.
C ENTRY POINTS ‘RAIDSET’ AND ‘RANDGET’ ARE SIKILAR TO THE CYBER-205
C ‘RANSET’ AND ‘RANGET’. THE NULTIPLIER AND DEFAULT SEED ARE THOSE OF
C THE CYBER-205. THE FIRST CALL TO THIS SUBROUTINE INITIALIZES THE
C nULTIPLIER VECTOR.
C

CORRON/R8RAN/R8SEED,KR8SZED,R8Z~RO,HR8nULF,KR8,KR8EXP,KR8ZERO
COKtlOW/R8KULV/nR8HULV(65535)
DESCRIPTOR V, KRBKULVD
DATA R8ZEROIO.O/,KR8KULP/X’O~C65DA2C866D’l,KR8/0/,KR8EXP/-47/,

lRR8SEED/X’OOOO54F4A3B933BD’/,KR6ZERO/O~
C
C

10

200

310

300

100

C
C SET

C

IF (HR8.EP.l) GO TO 200
CALL 08PACK(ttR8EXP,KR8SEED,R8SEED)
nR8KULV(l)=KR8KULP
DO 10 1=2,65535
CALL O8HPYLMR8KULV(I-l~,NR8nULP,nR8nULV~I~~
nR8=1
CONTIRUE
GO TO 100
ENTRY RANDSET(ISEED)
IF (nR8.EP.l) GO TO 300
nR8nULV(l)=nR8NULP
DO 310 112.65535
CALL O8ltPYi~ltR8tlULV~I-1),llR8KULP,KR8nULV(I))
WR8=1
CALL 08PACK(nR8EXP,ISEED,R8SEED)
RETURN
CONTINUE
CALL OBLTOR(V,,L)

UP REGISTERS FOR LINKED TRIAD
ASSIGN KRBIULVD. nR8llULV(l:L)
CALL 08RTOR (RBSEED,,3>
CALL 08RTOR (RBZERO,,I)
CALL OBRTOR (V,,5)

C EXECUTE LINK INSTRUCTION
CALL OBLINKV(X’8’)
CALL P8ttPYLV(X’10’,,3,.KR8nULVD,,5)
CALL 08ADDWV(X’10’,,4,,5,,5)

C
CALL O8nPYL(R8SEED,KR8KULV(L).RBSEED)
RETURW
ENTRY RAWDGET(NEWSEED)
CALL 08PACK(nR8ZEW.R8SEED,WEWSEED)
RETURN
END

ACKNOWLEDGMENTS

We gratefully acknowledge the help we were given by R. Begin, especially in setting up the link-triad.
We would also like to thank D. Barkai for explaining the seed-butfer method, our referees for a number
of interesting and useful suggestions, and L. M. Thorndyke, B. Robertson, and L. K. Steiner of ETA
systems, Inc., for access to the ETA Systems 4 Mword 2 vector pipeline CDC CYBER-205.

VECTORIZED RANDOM NUMBER GENERATORS 215

REFERENCES

1. D. BARKAI, K. J. M. MORIARTY, AND C. REBBI, Compur. Phys. Commun. 32 (1984)
2. A. D. KENNEDY, J. KUTI, AND B. J. PENDLETON, NSF-ITP-84-62, 1984.
3. C. KALLE AND S. WANSLEBEN, Comput. Phys. Commun. 33, 343 (1984).

RECEIVED January 15, 1985; REVISED August 14, 1985

WILLIAM CELMASTER

Physics Departmen
Northeastern University

Boston, Massachusetrs 02115

K. J. M. MORIARTY

Institute for Computational Studies
Department of Mathematics, Statistics, and Computing Science
Dalhousie University, Halijax, Nova Scotia B3H 4H8, Canada

