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Note 

A Method for Vectorized Random Number Generators* 

In this brief note we describe a technique that we have used to generate 
pseudorandom numbers on a CYBER-205 at an average rate of one per minor 
cycle. Our aim is to generate the identical sequence of random numbers which is 
produced by the CYBER-205 intrinsic subroutine VRANF, but at a faster rate. The 
general principles can be implemented on any SIMD machine, including array 
processors and CRAY’s. We do not here consider the issue of statistical properties 
of random number generators (rng’s) but rather will discuss several features having 
to do with vectorization of the linear congruential algorithm, 

Xn=(aXn-,) mod M, (1) 

The modulus, M, is often chosen in order to take advantage of machine architec- 
ture. So, for example, the CYBER-205 Fortran rng uses M= 247, corresponding to 
a 47-bit mantissa. 

The iterative nature of Eq (1) appears at first to prohibit vectorization (i.e., a 
parallel algorithm). Upon further scrutiny it turns out that vectorization is possible 
provided that one first creates a vector of seeds, “X,,” or a vector of multipliers, 
“a.” The first technique-that of using a seed-buffer-is presently in use in the 
CRAY Fortran libraries, and has been used on the CYBER-205 [l, 23. We will dis- 
cuss here the alternate method of multiplier-vectors. 

The scalar algorithm consists of the following steps: 

(Sl) Pick a fixed-point default seed, MSEED, and a fixed-point multiplier, 
MULT. 

(S2) Transform MSEED to a floating-point seed, RSEED, by packing “-47” 
into the exponent. 

(S3) Multiply RSEED by the multiplier and take the lower half of the 
product. On the CYBER-205, this operation picks out a mantissa consisting of the 
lower 47 bits of the mantissa-product, and an exponent of -47, the product of the 
two exponents. The result is the new floating-point seed, RSEED. 

(S4) Normalize the result by adding 0.0. This value is the output of the ran- 
dom number generator. 

* Work supported in part by the NSF. 

271 
0021-9991186 $3.00 

Copyright 0 1986 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



212 CELMASTER AND MORIARTY 

Our vector algorithm is similar: 

(Vl) The starting seed is created as in steps Sl and S2 above. 
(V2) Then generate a multiplier-buffer of length L, where the nth element is 

defined by 

a(n)= [a(n- l).a] mod M (2) 

and “a” is the multiplier, MULT. On the CYBER-205 the modulus is implemented, 
as described above, by taking the lower half of the product. The value of L should 
be chosen large enough so that the vector start-up time is negligible. In our 
program we use L= 65535, which is the maximum allowable vector length. The 
multiplier-buffer never needs to be updated. 

(V3) Next, construct a random number vector, of length N, by linking the 
lower-product and normalization steps. Namely, one first creates a vector of seeds 
by multiplying RSEED with the elements of the multiplier-buffer, extracting the 
lower half. This instruction is “linked” to the following step, which is the nor- 
malization step S4 above. 

(V4) The procedure is terminated by fetching the new seed to be used for the 
next set of random numbers. This is a single scalar operation consisting of lower- 
multiplication of RSEED by u(N). 

The resulting algorithm produces precisely the same sequence of pseudorandom 
numbers as the system-supplied subroutine VRANF, which is an optimized scalar 
routine. (However, it should be noted that in any two subsequent calls to VRANF, 
one random number is skipped. That is, if each call produces a vector of length N, 
the second vector begins at the (N+ 2)nd number in the sequence.) Some impor- 
tant features should be mentioned. First of all, the length N of the desired random 
number vector can be smaller than the size of the multiplier-buffer. If N is less than 
L, then only the first N multipliers are used. Furthermore, it is not necessary to use 
the same value of N each time the random numbers are needed. This feature makes 
it easy, in principle, to interweave scalar and vector random number generation. 
Second, only two arithmetic operations are required in vector mode (step V3). On 
the CYBER-205, each of these operations consists of a single machine instruction, 
and both instructions can be linked so that they execute in parallel. This results in a 
long-vector speed of one random number per cycle. Both of these features dis- 
tinguish our algorithm from the seed-buffer algorithm that has been used 
previously. We believe that we can gain a factor of two in speed over that 
algorithm. There also may be several advantages to having a fixed buffer of mul- 
tipliers with flexible-length random number vectors. 

It is worth observing here that the CYBER linear congruential algorithm has 
been criticized by Kalle and Wansleben [3]. They note that in several large Monte 
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Carlo applications, results appear to be dependent on the generator. They recom- 
mend instead a certain shift-register generator. The advantage of that method may 
be less obvious for simulations on systems whose sizes are not large powers of 2, or 
whose interactions are more complex than the Ising Model interactions (which do 
not require many floating-point operations) considered in Ref. [3], or for other 
update methods, such as the heat-bath update used in SU(2) gauge theories. 
Indeed, the linear congruential method may be more efficient than the shift-register 
method for problems which require short vectors of pseudorandom numbers, or 
which interleave scalar and vector generation. One way in which we might be able 
to improve upon the statistical properties of the CYBER linear congruential 
algorithm, at no cost in time, is by using an additive term in the generator, namely, 

X,=(aX,_,)modMfbmodM. (3) 

That can be easily implemented by changing step S4 above (and its vector counter- 
part) so that b (mod M) is added instead of 0.0 (for the vector version we would 
have to initialize an adder vector). We have not further explored this technique. 
Nor have we considered the statistical properties of the half-precision analogue of 
Eq.(l). The CYBER-205 supports half-precision operations which would allow the 
linear congruential method to be used with a modulus of 223. This algorithm could 
go at approximately double the speed of the one we have studied. Work would be 
required to determine good choices of multiplier, starting seed, and possibly 
additive term. In the meantime, for applications which require half-precision 
pseudorandom numbers, we proceed as follows: first generate full precision num- 
bers using RAND (V) (the algorithm described in steps Vl-V4) and then using the 
special Fortran call Q8CONV convert the resulting vector to half-precision. (Alter- 
natively, in Fortran, one can simply assign a half-precision vector to the result of 
RAND (V). This implicity performs the conversion Q8CONV.) 

We conclude by presenting a tested CYBER-205 random number subroutine. 
Much of it consists of special Fortran calls (“Qg...“) which directly translate into 
machine instructions. This routine has been designed with the idea that each 
program will make many calls to RAND, each of which will produce very long vec- 
tors. Therefore little attention has been paid to reducing the routine-calling 
overhead, or to optimizing the speed of the initialization segment of the routine. So, 
for instance, one call to RAND, with an argument vector of length 3000, takes 
43 psec on a 2-pipe CYBER-205. The overhead is approximately 10 psec. Thus the 
speed is about 10 psec per number with an overhead of about 1000 numbers. For 
comparison, the CYBER-205 intrinsic routine VRANF takes about 350 nsec per 
number. Of course, the first call to RAND also results in the initialization of the 
multiplier buffer. This could be made more efficient by first initializing a small buf- 
fer, and then using that in a recursive vector operation to generate the rest of the 
buffer. Also, initialization time can be decreased if the buffer length is reduced from 
its maximum of 65535. In fact, that would be desirable if the buffer vector is subject 
to paging (which costs more than 1 psec per multiplier). 
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SUBROUTINE RAND(V) 
C 
C THIS ROUTINE GENERATES A RANDOK VECTOR, STARTING WITH THE KOST RECENT 
C SEED. THE LENGTH OF THE VECTOR IS THE LENGTH OF THE DESCRIPTOR, V. 
C ENTRY POINTS ‘RAIDSET’ AND ‘RANDGET’ ARE SIKILAR TO THE CYBER-205 
C ‘RANSET’ AND ‘RANGET’. THE NULTIPLIER AND DEFAULT SEED ARE THOSE OF 
C THE CYBER-205. THE FIRST CALL TO THIS SUBROUTINE INITIALIZES THE 
C nULTIPLIER VECTOR. 
C 

CORRON/R8RAN/R8SEED,KR8SZED,R8Z~RO,HR8nULF,KR8,KR8EXP,KR8ZERO 
COKtlOW/R8KULV/nR8HULV(65535) 
DESCRIPTOR V, KRBKULVD 
DATA R8ZEROIO.O/,KR8KULP/X’O~C65DA2C866D’l,KR8/0/,KR8EXP/-47/, 

lRR8SEED/X’OOOO54F4A3B933BD’/,KR6ZERO/O~ 
C 
C 

10 

200 

310 

300 

100 

C 
C SET 

C 

IF (HR8.EP.l) GO TO 200 
CALL 08PACK(ttR8EXP,KR8SEED,R8SEED) 
nR8KULV(l)=KR8KULP 
DO 10 1=2,65535 
CALL O8HPYLMR8KULV(I-l~,NR8nULP,nR8nULV~I~~ 
nR8=1 
CONTIRUE 
GO TO 100 
ENTRY RANDSET(ISEED) 
IF (nR8.EP.l) GO TO 300 
nR8nULV(l)=nR8NULP 
DO 310 112.65535 
CALL O8ltPYi~ltR8tlULV~I-1),llR8KULP,KR8nULV(I)) 
WR8=1 
CALL 08PACK(nR8EXP,ISEED,R8SEED) 
RETURN 
CONTINUE 
CALL OBLTOR(V,,L) 

UP REGISTERS FOR LINKED TRIAD 
ASSIGN KRBIULVD. nR8llULV(l:L) 
CALL 08RTOR (RBSEED,,3> 
CALL 08RTOR (RBZERO,,I) 
CALL OBRTOR (V,,5) 

C EXECUTE LINK INSTRUCTION 
CALL OBLINKV(X’8’) 
CALL P8ttPYLV(X’10’,,3,.KR8nULVD,,5) 
CALL 08ADDWV(X’10’,,4,,5,,5) 

C 
CALL O8nPYL(R8SEED,KR8KULV(L).RBSEED) 
RETURW 
ENTRY RAWDGET(NEWSEED) 
CALL 08PACK(nR8ZEW.R8SEED,WEWSEED) 
RETURN 
END 
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